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Abstract

Numeracy is a critical component of higher-level reason-
ing, and it forms the basis for many tasks from perform-
ing mathematical operations to solving quantitative problems.
Large Language Models (LLMs) perform well on most hu-
man benchmarks and tasks, but they have consistently failed
when it comes to numeracy, even at its most basic level of
arithmetic. In this paper, we apply multi-dimensional scaling
(MDS) to pairwise similarity judgments of numbers 0 − 19,
extracting information on how both adult humans and GPT-4
internally represent them. The representations derived from
this approach reveal that GPT-4 represents numbers at a very
basic level (similar to that of children before they learn mathe-
matics in school) compared to adults who categorize numbers
by abstract numerical properties beyond only magnitude. This
suggests LLMs may need to form the right numerical inductive
biases to better represent numbers if they are to reach the level
of adult humans in numerical reasoning.
Keywords: LLM numeracy, similarity judgments, internal
representation, multi-dimensional scaling, clustering

Introduction
The problem of determining how people represent numbers
has had a long history in psychology and cognitive science
due to its centrality to everyday cognition (Cheyette & Pi-
antadosi, 2020; Miller & Gelman, 1983; Nieder & Dehaene,
2009). Recently, the numeracy problem has also drawn atten-
tion in the context of large language models (LLMs) (Wu et
al., 2023) due to their increasing ubiquity.

While these models seem to perform well on a variety
of human benchmarks, they consistently struggle when it
comes to arithmetic and numerical tasks—state-of-the-art
LLM models like GPT-4 consistently fail at arithmetic and
number sense (accounting for 68% of mathematical errors
compared to 32% from misunderstanding the problem state-
ment or wrong approach). Given just a 58% accuracy on el-
ementary arithmetic problems (Bubeck et al., 2023), this is a
severe limitation in numeracy and mathematical skills.

Unlike natural language tasks, mathematical reasoning
(most evidently in arithmetic) has one exact answer, posing a
unique challenge to LLMs (Imani, Du, & Shrivastava, 2023).
A huge challenge presented by arithmetic problems is a need
to “plan ahead” and look multiple steps ahead into a problem.
One purported reason for the lack of this ability is that “the
model has simply not been trained on enough data that in-
volves arithmetic to develop the inner mechanisms that would
allow it to perform successful ahead-planning” (Bubeck et
al., 2023). However, it is unclear exactly how much data is
needed and if the approach would even lead to success at all.

While there are clever workarounds to the LLM’s lack of
numeracy such as by delegating arithmetic to other programs

(Wu et al., 2023; Imani et al., 2023), this does not address the
underlying gap in general quantitative reasoning. This paper
aims to present a more direct explanation not from an en-
gineering perspective but rather one from cognitive science.
This project investigates the internal representation of num-
bers in GPT-4 using similarity judgments and agglomerative
clustering. This approach sidesteps many of the challenges
faced by traditional analysis of numeracy in LLMs by focus-
ing on the key component driving arithmetic error: a poten-
tially faulty internal representation of numbers.

One previous study found significant correlations between
human and GPT-4 internal representations such as the color
wheel or pitch spiral (Marjieh, Sucholutsky, van Rijn, Jacoby,
& Griffiths, 2023), but it is unclear whether GPT-4 has a sim-
ilar human-like representation for numbers. Identifying the
differences between GPT-4 and human internal representa-
tions will give more insight into how to better engineer future
LLMs to have better numerical skills while utilizing a smaller
dataset (more comparable to what an elementary school child
may see in school).

Background
We briefly review the numerical internal representations of
humans followed by an overview of why the same similarity
judgment approach is effective for Large Language Models
(LLMs).

Human Numerical Representation
Miller & Gelman previously showed how it is possible to
characterize the development of numerical representation in
children and adults (Miller & Gelman, 1983). Their tech-
nique utilized similarity judgments and multidimensional
scaling (MDS), an approach initially proposed by Shepard
for ”constructing representations of the psychological struc-
ture of a set of stimuli on the basis of pairwise measures of
similarity” (Shepard, 1980). Specifically, Miller & Gelman
reconstructed an internal spatial representation of numbers
MDS analysis on similarity judgment scores (rated 0− 1) of
pairs of different numbers.

In the same paper, the internal representations of children
were shown to mature from kindergarten, third grade, and
sixth grade to adulthood as the child gained a more sophis-
ticated understanding of mathematics and numerical reason-
ing. Spatially, the representations went from a sequential line
of numbers increasing in magnitude to a complex web reflect-
ing deeper relationships between numbers. The “basic char-
acteristic” of numbers that participants used to judge numbers
changed from magnitude (derived from counting) to features



like odd versus even and powers of two as children matured
(Miller & Gelman, 1983; Tenenbaum, 1999).

Analyzing Representation in LLMs

The benefit of using Shepard’s MDS approach is that it is pos-
sible to reconstruct a consistent internal representation simply
from pairwise comparisons of numbers, meaning complex ar-
chitectures from the human brain to LLMs can be modeled
easily. In fact, due to the strength of LLMs in natural lan-
guage, it is possible to prompt LLM ”participants” directly
using the same questions we can ask human participants. As
pointed out in a paper by Tversky & Hutchinson, additional
nearest-neighbor analysis using MDS methods can ”help di-
agnose the nature of the data and shed light on the adequacy
of the representation” (Tversky & Hutchinson, 1986). This
kind of analysis was critical decades ago when cognitive psy-
chologists were first discovering critical aspects of human
thinking, and it can be a useful exploratory tool when inter-
preting LLMs.

Recently, Marjieh et al. (2023) applied the similarity judg-
ment approach to LLMs in the context of perceptual domains.
It was shown that judgments from GPT-4 produced internal
representations significantly correlated with those of humans,
including known representations such as the “color wheel”
and “pitch spiral” (Marjieh et al., 2023). These representa-
tions also serve as inductive biases when reasoning beyond
a learned set, giving ways of interpolating and extrapolating
from learned data. It remains to be seen how LLMs inter-
nally represent numbers and—if they do so in a human-like
way—if the representation is closer to that of a child or an
adult.

Approach

To reconstruct the internal representation of numbers in GPT-
4, there are two key steps: collecting pairwise similarity judg-
ments for numbers 0−19 and then applying non-metric mul-
tidimensional scaling (MDS) to create a spatial representa-
tion. By running the same suite of tests on existing data from
adults, it is possible to compare internal representations as
well as individual similarity scores. An agglomerative clus-
tering step (plotted both on the MDS representation and vi-
sualized in a dendrogram) helps better quantify the groups
in the spatial representation, giving insight into how humans
and LLMs differently categorize numbers.

The strength of this approach is that it is effective at map-
ping out the internal representations just using similarity
judgments, which has already been done in previous work
(Marjieh et al., 2023). It is a natural approach to prompt an
LLM with natural language to get similarity scores (identi-
cally as done with humans). Thus, by running the same ex-
periment on humans and LLMs, it is possible to find the exact
differences between human and LLM representation.

Methods
Similarity Judgments
This paper used a similar method described in Marjieh et al.
for getting similarity judgments. The prompt consisted of one
sentence describing the dataset and one describing the simi-
larity rating scale and task (Marjieh et al., 2023). The simi-
larity on a scale from [0,1] was queried for every unique pair-
wise comparison of numbers in [0,19] from GPT-4. Note that
it was assumed that the matrix is symmetric, meaning that a
comparison between a,b is the same as a comparison between
b,a. The similarity matrix was then plotted for both GPT-4
and the human dataset.

Multi-Dimensional Scaling (MDS)
Using the similarity matrix from the previous step, non-
metric MDS analysis was performed to construct a low-
dimensional spatial representation of each number in space.
Note that the actual input to the MDS was the dissimilarity
(1− similarity) because MDS analysis uses distances rather
than similarity. The same analysis was conducted on the sim-
ilarity data of the same experiment conducted on humans to
reconstruct a similar spatial representation. From here, ag-
glomerative clustering was used to extract groups and visual
hierarchies. The MDS plots (with and without clusters) were
then plotted.

Adult Human Similarity Data
Data from Griffiths & Kalish (2002) was used as a human
benchmark for the LLM similarity comparisons. This data
was collected from “twenty undergraduate psychology stu-
dents from the University of Western Australia,” where each
student was asked to rate the similarity of various numbers in
a set 0−99 (Griffiths & Kalish, 2002). A normalization was
applied to get a pairwise similarity rating in the range 0−1 to
construct a similarity matrix. In this paper, only the portion
of the matrix corresponding with numbers 0− 19 was con-
sidered. From here, the same MDS step for the LLMs was
applied to the human similarity data.

Results
We first plot the similarity matrix for LLM and human simi-
larity judgments in Figure 1:

Figure 1: Pairwise Similarity Matrix of GPT-4 and Adult



The GPT-4 matrix shows a strong diagonal structure and
consistently groups numbers closer together in magnitude
as seen from the spread over the diagonal. This is in con-
trast to the adult humans, who did not always rate numbers
closer together on the number line as more similar. GPT-4
also was more variable with similarity judgments than hu-
mans, rating with µ = 0.3752,σ = 0.3272 compared to hu-
mans (µ = 0.7467,σ = 0.06435) when not including the di-
agonal. The Pearson product-moment correlation coefficient
between the two matrices is r = 0.01789, which is too low to
consider correlated. Thus, GPT-4’s internal representation is
significantly different from that of adults.

The results can also be visualized as a spatial representa-
tion after applying nonmetric MDS on the similarity matrix
as shown in Figure 2:

Figure 2: MDS Spatial Representation of GPT-4 and Adult

GPT-4 represents the numbers on a curved number line of
increasing magnitude in contrast to the human representation,
which has a more complex structure. The spatial representa-
tion from GPT-4 is very similar to the one found in children
in kindergarten and third grade, who also placed numbers in
a sequential increasing order (Miller & Gelman, 1983).

Using agglomerative clustering on these MDS spatial em-
beddings, it is possible to quantitatively extract the categories
that both GPT-4 and adult humans grouped numbers into
when making similarity judgments. The number of clusters
k = 8 was selected as Tenenbaum also used that many clusters
in their analysis, allowing for better comparison with previ-
ous studies (Tenenbaum, 1999).

Figure 3: MDS Spatial Representation (with Clustering) of
GPT-4 and Adult

As seen from figures 3 and 4, the larger groups GPT-4
uses are strictly by ranges in magnitude (e.g. 0− 1, 7− 9,
15− 19), while the adult data shows more sophisticated nu-
merical groupings. Figure 4 shows the complex groupings

Figure 4: Dendrogram of GPT-4 and Adult Clustering over
MDS

adults make in a dendrogram, compared with the groupings
from GPT-4. Some examples of groups from the adult data
set include big primes, numbers divisible by 7, big compos-
ites, evens, and more. In the GPT-4 dendrogram, there are
only two examples (16,18 and 17,19) where GPT-4 does not
group numbers consecutively next to each other on the num-
ber line.

Discussion
Despite best efforts to improve Large Language Model
(LLM) numeracy, even cutting-edge tools like GPT-4 strug-
gle to match human ability on simple arithmetic tasks and
numerical reasoning. The problem is quite difficult given the
sheer scale and complexity of LLMs, and failures in numer-
acy are often attributed to insufficient training in arithmetic.
However, the goal of this paper was to identify differences
in a key component driving arithmetic error: a faulty internal
representation of numbers.

A Child-Like Representation of Numbers
Spatial (and categorical) representations are one way of peek-
ing into complex internal cognitive processes to derive insight
into how humans (or LLMs) process information. The results
from this paper show GPT-4 spatial and categorical represen-
tation was almost identical to that of a kindergartner-age child
who has not yet learned basic mathematics (Miller & Gelman,
1983), in far contrast to the nuanced internal representations
of adult humans. This suggests GPT-4 has a basic internal
representation that does not show the same sophistication that
adults gain after they learn “addition,” “oddness and evenness
of stimuli,” “other multiplicative relations,” and other math-
ematical concepts (Miller & Gelman, 1983), suggesting that
GPT-4 has not fully learned basic numeric ability on a repre-
sentational level.

As Bubeck et al., point out, GPT-4 may not be trained on
sufficient data involving arithmetic to form a complete inter-
nal representation (Bubeck et al., 2023). Now, the similarity
judgment approach from this paper provides a rough bench-
mark in evaluating progress as future versions of LLMs train
on more data or use intelligent inductive biases.

Limitations & Next Steps
With access to only the average similarity rating instead of
the individual human participants’ responses to the similar-



ity task, it was not possible to run additional statistical tests
such as forming a 95% confidence interval for ratings. With
more human data points available, more tests can be run on
GPT-4 to test variance in ratings, error, and other statistical
measures.

Future work could also look at other basic operations such
as multiplication (for which human data is already available)
and identify where in a complex operation the model fails to
“plan ahead.” Looking at more complex tasks like proofs that
combine natural language is also crucial as even workarounds
for arithmetic do not work in this domain. To improve nu-
meracy, methods such as prompting the model to have a bet-
ter representation, training on select representative data, and
explicitly teaching mathematical concepts may provide the
inductive bias needed for LLMs to perform more accurately.

Conclusion
While it still may be insufficient to have a sophisticated in-
ternal representation of numbers to accurately reason numer-
ically, a lack of one signals the absence of knowledge and
skill that children can pick up with far more limited data than
LLMs. As symbolic reasoning provides for an infinite space
of questions, LLMs may soon face the same issues as humans
do but on a larger scale. Especially since basic numeracy
serves as a building block for higher-level logical reasoning,
LLMs must form the right numerical inductive biases if they
are to reason to the level of humans.
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